Т	1	N	J	В	D	G	R	К	К	J	Α	В	G	Α
	ı	14	J	В	D	G	П	IX	IX	J	^	Ь	G	^
Z	W	Z	С	D	Ε	Ε	R	Α	С	Ε	В	R	V	С
L	Ε	С	Α	Ν	D	С	J	N	С	Т	Α	0	0	D
F	Z	Α	L	I	Α	С	R	0	Р	М	G	N	0	Р
Q	S	Z	С	G	Р	S	N	Т	S	Α	С	R	Α	Ε
G	L	Z	U	К	N	0	Q	Р	D	Ε	Т	Т	٧	М
U	Т	Ν	L	Q	М	L	Р	R	Ν	I	Н	J	D	U
F	U	S	Α	Υ	Υ	D	0	Т	Т	W	J	К	L	L
S	L	М	Т	S	Z	R	R	R	Α	Υ	I	Μ	Ε	0
Α	Ε	К	I	G	Α	Α	Α	Y	V	٧	0	Р	I	V
Υ	Q	М	0	М	Т	Т	J	Χ	F	L	U	Ε	Υ	G
J	D	К	N	ı	ı	К	G	Р	Ε	U	С	L	Z	С
Q	N	Α	0	0	Μ	٧	С	S	F	С	В	К	Ε	٧
Υ	В	N	N	D	W	Α	Р	G	S	Y	М	R	Y	J
Μ	G	W	Υ	U	Т	К	Z	Q	0	J	J	Н	Ε	W

HINTS

concentration grams moles titration yield economy volume pathway calculation avogadro

		1						
	2							
			3					
	4							
5								
		6						
		7						
			8					

HINTS

- 1 SI unit for mass
- 2 24 dm³ or 24000 cm³
- 3 mass \div Mr = ?
- 4 We take multiple readings in experiments to calculate this
- 5 moles of solute ÷ volume of solvent = ?
- Standard procedure for a titration must be carried out, such as the use of a white tile and swirling the conical flask to obtain an accurate _____
- 7 A tall piece of equipment used during titrations to accurately add a reactant
- 8 It is important that the titres you include in your calculation are within 0.10 ml

				1		2												
		JI.	•							Л								
4																		
					J													
7																		
		JI.	•	,														
								8										
									•									
											-							
														_				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

ACROSS

- A perfect reaction will 100% convert reactant into product, why?
- Where product may be left, affecting percentage yield
- 8 ____ by 1000 to convert from cm^3 to dm^3
- 9 Avogadro's law states that equal volumes of different gases contain an equal number of _____
- 10 % yield = (actual yield ÷ _____ yield) x 100

DOWN

- Atom economy is often used to work out how much of this colour reactions are
- When working with a symbol equation it is important it is this.
- A reaction that only produces ___ ____, will have a 100% atom economy.
- 5 % ____ = (RFM of desired product ÷ RFM of all products) x 100
- The indicator NOT to use during titrations